Advertisements
Advertisements
प्रश्न
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
पर्याय
7
12
25
None of these
उत्तर
Given:
`a cos θ+b sinθ=4`
`a sin θ-b cosθ=3`
Squaring and then adding the above two equations, we have
`(a cosθ+b sinθ)^2+(a sinθ-b cosθ)^2=(4)^2+(3)^2`
`=(a^2cos^2θ+b^2 sin^2θ+2a cosθ.b.sinθ)+(a^2 sin^2θ+b^2 cos^2θ-2.a sinθ.b cosθ)=16+9`
`=a^2 cos^2θ+b^2 sin^2θ+ab sinθ cosθ+a^2 sin^2θ+b^2 cos^2θ-2ab sinθ cosθ=25`
`=a^2 cos^2θ+b^2 sin^2θ+a^2 sin^2θ+b^2 cos^2θ=25`
`=(a^2 cos^2θ+a^2sin^2θ)+(b^2 sin^2θ+b^2 cos^2θ)=25`
=`a^2(cos^2θ+sin^2θ)+b^2(sin^2θ+cos^2θ=25)`
`=a^2(1)+b^2(1)=25`
=`a^2+b^2=25``
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Simplify : 2 sin30 + 3 tan45.
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
Choose the correct alternative:
sec 60° = ?
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ