हिंदी

If a Cos θ + B Sin θ = 4 and a Sin θ − B Sin θ = 3, Then A2 + B2 = - Mathematics

Advertisements
Advertisements

प्रश्न

If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2

विकल्प

  •  7

  • 12

  • 25

  • None of these

MCQ

उत्तर

Given: 

`a cos θ+b sinθ=4` 

`a sin θ-b cosθ=3` 

Squaring and then adding the above two equations, we have

`(a cosθ+b sinθ)^2+(a sinθ-b cosθ)^2=(4)^2+(3)^2` 

`=(a^2cos^2θ+b^2 sin^2θ+2a cosθ.b.sinθ)+(a^2 sin^2θ+b^2 cos^2θ-2.a sinθ.b cosθ)=16+9`

`=a^2 cos^2θ+b^2 sin^2θ+ab sinθ cosθ+a^2 sin^2θ+b^2 cos^2θ-2ab sinθ cosθ=25`

`=a^2 cos^2θ+b^2 sin^2θ+a^2 sin^2θ+b^2 cos^2θ=25`

`=(a^2 cos^2θ+a^2sin^2θ)+(b^2 sin^2θ+b^2 cos^2θ)=25`

=`a^2(cos^2θ+sin^2θ)+b^2(sin^2θ+cos^2θ=25)`

`=a^2(1)+b^2(1)=25`

=`a^2+b^2=25``

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 16 | पृष्ठ ५७

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`


The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.


Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following trigonometric identity:

`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


If sec θ + tan θ = x, then sec θ =


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


If tan θ = `13/12`, then cot θ = ?


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


If 3 sin θ = 4 cos θ, then sec θ = ?


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×