हिंदी

2 (Sin6 θ + Cos6 θ) − 3 (Sin4 θ + Cos4 θ) is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 

विकल्प

  •  0

  •  1

  •  −1

  • None of these

MCQ

उत्तर

The given expression is `2(sin^6θ+cos^6θ)-3(sin^4θ+cos^4θ)` 

Simplifying the given expression, we have

`2(sinθ+cos^6θ)-3(sin^4θ+cos^4θ)` 

= `2sin^6θ+2cos^6θ-3sin^4θ-3cos^4θ`

=`(2 sin^6 θ-3sin^4θ)+(2 cos^6-3 cos^4θ)`

=`sin^4θ(2sin^2θ-3)+cos^4θ(2 cos^2θ-3)`

`=sin^4θ{2(1-cos^2)-3}+cos^4θ{2(1-sin^2 θ)-3)` 

`= sin^4θ(2-2cos^2θ-3)+cos^4θ(2-2sin^2 θ-3) `

`=sin^4θ(-1-2cos^θ)+cos^4θ(1-2sin^2θ)` 

`= -sin^4θ-2 sin^4θ cos^2θ-cos^4θ-2cos^4 θ sin^2θ`

`=sin^4θ-cos^4θ-2 cos^4 θ sin^2θ-2 sin^4 θcos^2θ`

`=-sin^4θ-cos^4θ-2cos^2θ sin^2(cos^2+sin^2θ)`

`=-sin^4θ-cos^4θ-2cos^2θsin^2θ(1)`

`=-sin^4θ-cos^4θ-2cos^2sin^2θ`

`=(sin^4θ+cos^4 θ+2 cos^2 θ sin^2 θ)`

`=-{(sin^2θ)^2+(cos^2θ)^2+2 sin^2 θ cos^2θ}`

` =-(sin^2θ+cos^2θ)^2` 

`=-(1)^2`

`=-1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 15 | पृष्ठ ५७

संबंधित प्रश्न

Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove the following identities:

`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]


If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.


Prove the following identity :

`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`


Prove the following identity : 

`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×