Advertisements
Advertisements
प्रश्न
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
विकल्प
0
1
−1
None of these
उत्तर
The given expression is `2(sin^6θ+cos^6θ)-3(sin^4θ+cos^4θ)`
Simplifying the given expression, we have
`2(sinθ+cos^6θ)-3(sin^4θ+cos^4θ)`
= `2sin^6θ+2cos^6θ-3sin^4θ-3cos^4θ`
=`(2 sin^6 θ-3sin^4θ)+(2 cos^6-3 cos^4θ)`
=`sin^4θ(2sin^2θ-3)+cos^4θ(2 cos^2θ-3)`
`=sin^4θ{2(1-cos^2)-3}+cos^4θ{2(1-sin^2 θ)-3)`
`= sin^4θ(2-2cos^2θ-3)+cos^4θ(2-2sin^2 θ-3) `
`=sin^4θ(-1-2cos^θ)+cos^4θ(1-2sin^2θ)`
`= -sin^4θ-2 sin^4θ cos^2θ-cos^4θ-2cos^4 θ sin^2θ`
`=sin^4θ-cos^4θ-2 cos^4 θ sin^2θ-2 sin^4 θcos^2θ`
`=-sin^4θ-cos^4θ-2cos^2θ sin^2(cos^2+sin^2θ)`
`=-sin^4θ-cos^4θ-2cos^2θsin^2θ(1)`
`=-sin^4θ-cos^4θ-2cos^2sin^2θ`
`=(sin^4θ+cos^4 θ+2 cos^2 θ sin^2 θ)`
`=-{(sin^2θ)^2+(cos^2θ)^2+2 sin^2 θ cos^2θ}`
` =-(sin^2θ+cos^2θ)^2`
`=-(1)^2`
`=-1`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.