Advertisements
Advertisements
प्रश्न
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
उत्तर
L.H.S. = `1/(1+cosA)+1/(1-cosA)`
= `(1 - cosA + 1 + cosA)/((1 + cosA)(1 - cosA))`
= `2/(1 - cos^2A)` ...(∵ 1 – cos2 A = sin2 A)
= `2/(sin^2A)`
= 2 cosec2 A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`