Advertisements
Advertisements
Question
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Solution
L.H.S. = `1/(1+cosA)+1/(1-cosA)`
= `(1 - cosA + 1 + cosA)/((1 + cosA)(1 - cosA))`
= `2/(1 - cos^2A)` ...(∵ 1 – cos2 A = sin2 A)
= `2/(sin^2A)`
= 2 cosec2 A = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
If cos A + cos2A = 1, then sin2A + sin4 A = ?