Advertisements
Advertisements
Question
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Solution
L.H.S. = sec2 A . cosec2 A
= `1/(cos^2A) * 1/(sin^2A)`
= `1/(cos^2A sin^2A)`
= `(sin^2A + cos^2A)/(cos^2A sin^2A)`
= `1/(cos^2A) + 1/(sin^2A)`
= sec2 A + cosec2 A
= 1 + tan2 A + 1 + cot2 A ...(∵ sec2 A = 1 + tan2 A and cosec2 A = 1 + cot2 A)
= tan2 A + cot2 A + 2 = R.H.S.
APPEARS IN
RELATED QUESTIONS
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`