Advertisements
Advertisements
Question
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Solution
LHS = `cosec^4A - cosec^2A`
= `cosec^2A(cosec^2A - 1)`
RHS = `cot^4A + cot^2A`
= `cot^2A(cot^2A + 1)`
= `(cosec^2A - 1)cosec^2A`
Thus , LHS = RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`