English

Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE chapter 21 - Trigonometric Identities [Latest edition]

Advertisements

Chapters

Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE chapter 21 - Trigonometric Identities - Shaalaa.com
Advertisements

Solutions for Chapter 21: Trigonometric Identities

Below listed, you can find solutions for Chapter 21 of CISCE Frank for Mathematics - Part 2 [English] Class 10 ICSE.


Exercise 21.1Exercise 21.2Exercise 21.3
Exercise 21.1

Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE 21 Trigonometric Identities Exercise 21.1

Exercise 21.1 | Q 1.01

Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`

Exercise 21.1 | Q 1.02

Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`

Exercise 21.1 | Q 1.03

Prove the following identity :

tanA+cotA=secAcosecA 

Exercise 21.1 | Q 1.04

Prove the following identity :

`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ` 

Exercise 21.1 | Q 1.05

Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 

Exercise 21.1 | Q 1.06

Prove the following identity :

sinθcotθ + sinθcosecθ = 1 + cosθ  

Exercise 21.1 | Q 1.07

Prove the following identity :

secA(1 - sinA)(secA + tanA) = 1

Exercise 21.1 | Q 1.08

Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1

Exercise 21.1 | Q 1.09

Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1

Exercise 21.1 | Q 1.1

Prove the following identity : 

`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`

Exercise 21.1 | Q 1.11

Prove the following identity :

`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`

Exercise 21.1 | Q 1.12

Prove the following identity :

`cosA/(1 + sinA) = secA - tanA`

Exercise 21.1 | Q 1.13

Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`

Exercise 21.1 | Q 2.01

Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`

Exercise 21.1 | Q 2.02

Prove the following identity :

`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`

Exercise 21.1 | Q 2.03

Prove the following identity :

`cosec^4A - cosec^2A = cot^4A + cot^2A`

Exercise 21.1 | Q 2.04

Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`

Exercise 21.1 | Q 2.05

Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`

Exercise 21.1 | Q 2.06

Prove the following identity :

`tan^2A - sin^2A = tan^2A.sin^2A`

Exercise 21.1 | Q 2.07

Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`

Exercise 21.1 | Q 2.08

Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`

Exercise 21.1 | Q 2.09

Prove the following identity :

`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`

Exercise 21.1 | Q 2.1

Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`

Exercise 21.1 | Q 2.11

Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`

Exercise 21.1 | Q 2.12

Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`

Exercise 21.1 | Q 2.13

Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`

Exercise 21.1 | Q 2.14

Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`

Exercise 21.1 | Q 2.15

Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`

Exercise 21.1 | Q 2.16

Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`

Exercise 21.1 | Q 2.17

Prove the following identities:

`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`

Exercise 21.1 | Q 3.01

Prove the following identity : 

`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`

Exercise 21.1 | Q 3.02

Prove the following identity :

`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`

Exercise 21.1 | Q 3.03

Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`

Exercise 21.1 | Q 3.04

Prove the following identity :

`1/(tanA + cotA) = sinAcosA`

Exercise 21.1 | Q 3.05

Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`

Exercise 21.1 | Q 3.06

Prove the following identity : 

`((1 + tan^2A)cotA)/(cosec^2A) = tanA`

Exercise 21.1 | Q 3.07

Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`

Exercise 21.1 | Q 3.08

Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`

Exercise 21.1 | Q 3.09

Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`

Exercise 21.1 | Q 3.1

Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`

Exercise 21.1 | Q 4.01

Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`

Exercise 21.1 | Q 4.02

Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq

Exercise 21.1 | Q 4.03

Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`

Exercise 21.1 | Q 4.04

Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`

Exercise 21.1 | Q 4.05

Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq

Exercise 21.1 | Q 5.01

Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`

Exercise 21.1 | Q 5.02

Prove the following identity : 

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`

Exercise 21.1 | Q 5.03

Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`

Exercise 21.1 | Q 5.04

Prove the following identity : 

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`

Exercise 21.1 | Q 5.05

Prove the following identity : 

`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`

Exercise 21.1 | Q 5.06

Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`

Exercise 21.1 | Q 5.07

Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`

Exercise 21.1 | Q 5.08

Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`

Exercise 21.1 | Q 5.09

Prove the following identity : 

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`

Exercise 21.1 | Q 5.1

Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`

Exercise 21.1 | Q 5.11

Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`

Exercise 21.1 | Q 5.12

Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`

Exercise 21.1 | Q 6.01

Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`

Exercise 21.1 | Q 6.02

Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`

Exercise 21.1 | Q 6.03

Prove the following identity : 

`(1 + tan^2θ)sinθcosθ = tanθ`

Exercise 21.1 | Q 6.04

Prove the following identity : 

`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`

Exercise 21.1 | Q 6.05

Prove the following identity : 

`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`

Exercise 21.1 | Q 6.06

Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`

Exercise 21.1 | Q 6.07

Prove the following identity : 

`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`

Exercise 21.1 | Q 6.08

Prove the following identity : 

`sec^4A - sec^2A = sin^2A/cos^4A`

Exercise 21.1 | Q 6.09

Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`

Exercise 21.1 | Q 6.1

Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`

Exercise 21.1 | Q 6.11

Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`

Exercise 21.1 | Q 6.12

Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`

Exercise 21.1 | Q 6.13

Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`

Exercise 21.1 | Q 6.14

Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`

Exercise 21.2

Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE 21 Trigonometric Identities Exercise 21.2

Exercise 21.2 | Q 1

If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2

Exercise 21.2 | Q 2

If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`

Exercise 21.2 | Q 3

If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`

Exercise 21.2 | Q 4

If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m

Exercise 21.2 | Q 5

If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`

Exercise 21.2 | Q 6

If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1

Exercise 21.2 | Q 7

If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`

Exercise 21.2 | Q 8

If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 

Exercise 21.2 | Q 9

If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`

Exercise 21.2 | Q 10

If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)

Exercise 21.3

Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE 21 Trigonometric Identities Exercise 21.3

Exercise 21.3 | Q 1.01

Without using trigonometric table , evaluate : 

`cosec49°cos41° + (tan31°)/(cot59°)`

Exercise 21.3 | Q 1.02

Without using trigonometric table , evaluate : 

`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`

Exercise 21.3 | Q 1.03

Without using trigonometric table , evaluate : 

`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`

Exercise 21.3 | Q 1.04

Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`

Exercise 21.3 | Q 1.05

Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`

Exercise 21.3 | Q 2.01

Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`

Exercise 21.3 | Q 2.02

Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`

Exercise 21.3 | Q 3.01

Without using trigonometric identity , show that :

`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`

Exercise 21.3 | Q 3.02

Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`

Exercise 21.3 | Q 3.03

Without using trigonometric identity , show that :

`sin(50^circ + θ) - cos(40^circ - θ) = 0`

Exercise 21.3 | Q 3.04

Without using trigonometric identity , show that :

`cos^2 25^circ + cos^2 65^circ = 1`

Exercise 21.3 | Q 3.05

Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`

Exercise 21.3 | Q 4

Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`

Exercise 21.3 | Q 5.01

For ΔABC , prove that : 

`tan ((B + C)/2) = cot "A/2`

Exercise 21.3 | Q 5.02

For ΔABC , prove that : 

`sin((A + B)/2) = cos"C/2`

Exercise 21.3 | Q 6

Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`

Exercise 21.3 | Q 7

Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`

Exercise 21.3 | Q 8

Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`

Exercise 21.3 | Q 9

Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A

Exercise 21.3 | Q 10

prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`

Solutions for 21: Trigonometric Identities

Exercise 21.1Exercise 21.2Exercise 21.3
Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE chapter 21 - Trigonometric Identities - Shaalaa.com

Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE chapter 21 - Trigonometric Identities

Shaalaa.com has the CISCE Mathematics Mathematics - Part 2 [English] Class 10 ICSE CISCE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. Frank solutions for Mathematics Mathematics - Part 2 [English] Class 10 ICSE CISCE 21 (Trigonometric Identities) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. Frank textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics - Part 2 [English] Class 10 ICSE chapter 21 Trigonometric Identities are Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Heights and Distances - Solving 2-D Problems Involving Angles of Elevation and Depression Using Trigonometric Tables, Trigonometry.

Using Frank Mathematics - Part 2 [English] Class 10 ICSE solutions Trigonometric Identities exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in Frank Solutions are essential questions that can be asked in the final exam. Maximum CISCE Mathematics - Part 2 [English] Class 10 ICSE students prefer Frank Textbook Solutions to score more in exams.

Get the free view of Chapter 21, Trigonometric Identities Mathematics - Part 2 [English] Class 10 ICSE additional questions for Mathematics Mathematics - Part 2 [English] Class 10 ICSE CISCE, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×