Advertisements
Advertisements
Question
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Solution
LHS = `(secA - 1)/(secA + 1)`
= `(1/cosA - 1)/(1/cosA + 1) = (1 - cosA)/(1 + cosA)`
= `(1 - cosA)/(1 + cosA) xx (1 + cosA)/(1 + cosA)`
= `(1-cos^2A)/(1 + cosA)^2`
= `sin^2A/(1 + cosA)^2` (∵ `1 - cos^2A = sin^2A`)
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.