Advertisements
Advertisements
Question
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Solution
`(1 + cotA)^2 + (1 - cotA)^2`
= `1 + cot^2A + 2cotA + 1 + cot^2A - 2cotA`
= `2 + 2cot^2A = 2(1 + cot^2A)`
= `2cosec^2A`
APPEARS IN
RELATED QUESTIONS
Prove that `cosA/(1+sinA) + tan A = secA`
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.