Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
उत्तर
`(1 + cotA)^2 + (1 - cotA)^2`
= `1 + cot^2A + 2cotA + 1 + cot^2A - 2cotA`
= `2 + 2cot^2A = 2(1 + cot^2A)`
= `2cosec^2A`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.