Advertisements
Advertisements
प्रश्न
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
उत्तर
Taking L.H.S.
`(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A")`
`((sin^2"A")/(cos^2"A"))/((sin^2"A")/(cos^2"A")-1)+ ((1)/(sin^2"A"))/((1)/(cos^2"A")-(1)/(sin^2"A")) ...(∵ tan "A" = (sin"A")/(cos"A"))`
= `(sin^2"A")/(sin^2 "A"- cos^2"A") + (1)/(sin^2 "A"). (sin^2"A" cos^2"A")/(sin^2"A"-cos^2"A")`
= `(sin^2"A")/(sin^2 "A"- cos^2"A") + (cos^2"A")/(sin^2 "A"- cos^2"A")`
= `(sin^2 "A"+ cos^2"A")/(sin^2"A"-cos^2"A")`
= `(1)/(1-cos^2"A"-cos^2"A") ...(∵ sin^2 "A" = 1 -cos^2"A")`
= `(1)/(1-2 cos^2 "A")`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Simplify : 2 sin30 + 3 tan45.
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
sin2θ + sin2(90 – θ) = ?
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
If tan θ × A = sin θ, then A = ?
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.