Advertisements
Advertisements
प्रश्न
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
उत्तर
sec θ = `41/40` ......[Given]
∴ cos θ = `1/sectheta = 1/(41/40)`
∴ cos θ = `40/41`
We know that,
sin2θ + cos2θ = 1
∴ `sin^2theta + (40/41)^2` = 1
∴ `sin^2theta + 1600/1681` = 1
∴ sin2θ = `1 - 1600/1681`
∴ sin2θ = `(1681- 1600)/1681`
∴ sin2θ = `81/1681`
∴ sin θ = `9/41` .......[Taking square root of both sides]
Now, cosec θ = `1/sintheta`
= `1/((9/41))`
= `41/9`
cot θ = `costheta/sintheta`
= `((40/41))/((9/41))`
= `40/9`
∴ sin θ = `9/41`, cot θ = `40/9`, cosec θ = `41/9`
संबंधित प्रश्न
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
sec θ when expressed in term of cot θ, is equal to ______.
(1 – cos2 A) is equal to ______.