English

If sec θ = 4140, then find values of sin θ, cot θ, cosec θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ

Sum

Solution

sec θ = `41/40`     ......[Given]

∴ cos θ = `1/sectheta = 1/(41/40)`

∴ cos θ = `40/41`

We know that,

sin2θ + cos2θ = 1

∴ `sin^2theta + (40/41)^2` = 1

∴ `sin^2theta + 1600/1681` = 1

∴ sin2θ = `1 - 1600/1681`

∴ sin2θ = `(1681- 1600)/1681`

∴ sin2θ = `81/1681`

∴ sin θ = `9/41`   .......[Taking square root of both sides]

Now, cosec θ = `1/sintheta`

= `1/((9/41))`

= `41/9`

cot θ = `costheta/sintheta`

= `((40/41))/((9/41))`

= `40/9`

∴ sin θ = `9/41`, cot θ = `40/9`, cosec θ = `41/9`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.3 (B)

RELATED QUESTIONS

Express the ratios cos A, tan A and sec A in terms of sin A.


 
 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)` 

[Hint : Simplify LHS and RHS separately.]

 
 

Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


Prove the following trigonometric identities.

`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`


Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`


Prove that:

`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`sin^2 theta + 1/((1+tan^2 theta))=1`


`sec theta (1- sin theta )( sec theta + tan theta )=1`


What is the value of 9cot2 θ − 9cosec2 θ? 


cos4 A − sin4 A is equal to ______.


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×