Advertisements
Advertisements
Question
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Solution
sec θ = `41/40` ......[Given]
∴ cos θ = `1/sectheta = 1/(41/40)`
∴ cos θ = `40/41`
We know that,
sin2θ + cos2θ = 1
∴ `sin^2theta + (40/41)^2` = 1
∴ `sin^2theta + 1600/1681` = 1
∴ sin2θ = `1 - 1600/1681`
∴ sin2θ = `(1681- 1600)/1681`
∴ sin2θ = `81/1681`
∴ sin θ = `9/41` .......[Taking square root of both sides]
Now, cosec θ = `1/sintheta`
= `1/((9/41))`
= `41/9`
cot θ = `costheta/sintheta`
= `((40/41))/((9/41))`
= `40/9`
∴ sin θ = `9/41`, cot θ = `40/9`, cosec θ = `41/9`
RELATED QUESTIONS
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`sin^2 theta + 1/((1+tan^2 theta))=1`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
What is the value of 9cot2 θ − 9cosec2 θ?
cos4 A − sin4 A is equal to ______.
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.