Advertisements
Advertisements
Question
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Solution
We know that `cosec^A - cot^2 A = 1`
So,
`(1 + cot^2 A)sin^2 A = cosec^2 A sin^2A`
`= (cosec A sin A)^2`
`= (1/sin A xx sin A)^2`
`= (1)^2`
= 1
APPEARS IN
RELATED QUESTIONS
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
If tan θ × A = sin θ, then A = ?
Show that tan4θ + tan2θ = sec4θ – sec2θ.
If tan θ = `x/y`, then cos θ is equal to ______.