Advertisements
Advertisements
Question
Show that tan4θ + tan2θ = sec4θ – sec2θ.
Solution
L.H.S = tan4θ + tan2θ
= tan2θ(tan2θ + 1)
= tan2θ.sec2θ ...[∵ sec2θ = tan2θ + 1]
= (sec2θ – 1).sec2θ ...[∵ tan2θ = sec2θ – 1]
= sec4θ – sec2θ
= R.H.S
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
If 3 sin θ = 4 cos θ, then sec θ = ?
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.