English

Show that tan4θ + tan2θ = sec4θ – sec2θ. - Mathematics

Advertisements
Advertisements

Question

Show that tan4θ + tan2θ = sec4θ – sec2θ.

Sum

Solution

L.H.S = tan4θ + tan2θ

= tan2θ(tan2θ + 1)

= tan2θ.sec2θ  ...[∵ sec2θ = tan2θ + 1]

= (sec2θ – 1).sec2θ  ...[∵ tan2θ = sec2θ – 1]

= sec4θ – sec2θ

= R.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [Page 95]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 15 | Page 95

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`


Prove the following trigonometric identities.

`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`


Prove the following trigonometric identities.

`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`


Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


If 3 sin θ = 4 cos θ, then sec θ = ?


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×