Advertisements
Advertisements
Question
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.
Solution
L.H.S. = `(1 + sec A)/sec A`
= `(1 + 1/ cos A)/(1/cos A)`
= `((cos A + 1)/cos A)/(1/cos A)`
= 1 + cos A = `((1 + cos A))/1 xx ((1 - cos A))/((1 - cos A))`
= `(1 - cos^2 A)/(1 - cos A)`
`\implies (sin^2 A)/(1 - cos A)` = R.H.S. ...(∵ sin2 A + cos2 A = 1)
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
The value of sin2 29° + sin2 61° is
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
If sin θ = `1/2`, then find the value of θ.
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
If x = a tan θ and y = b sec θ then
If 1 – cos2θ = `1/4`, then θ = ?
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`