Advertisements
Advertisements
Question
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Solution 1
...
Solution 2
LHS = `(1 + tan^2A) + (1 + 1/tan^2A)`
= `(1 + sin^2A/cos^2A) + (1 + 1/(sin^2A/cos^2A))`
= `((cos^2A + sin^2A)/(cos^2A)) + ((cos^2A + sin^2A)/(sin^2A))`
= `1/(1 - sin^2A) + 1/sin^2A` (∵ `cos^2A + sin^2A = 1`)
= `(sin^2A + 1 - sin^2A)/(sin^2A(1 - sin^2A)) = 1/(sin^2A - sin^4A)`
APPEARS IN
RELATED QUESTIONS
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If `sec theta = x ,"write the value of tan" theta`.
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
If cos θ = `24/25`, then sin θ = ?
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`