Advertisements
Advertisements
Question
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
Solution
3 sin A + 5 cos A = 5 ....[Given]
∴ (3 sin A + 5 cos A)2 = 25 ......[Squaring both the sides]
∴ 9 sin2A + 30 sin A cos A + 25 cos2A = 25
∴ 9(1 – cos2A) + 30 sin A cos A + 25(1 – sin2A) = 25
∴ 9 – 9 cos2A + 30 sin A cos A + 25 – 25 sin2A = 25
∴ 25 sin2A – 30 sin A cos A + 9 cos2A = 9
∴ (5 sin A – 3 cos A)2 = 9 ......[∵ a2 – 2ab + b2 = (a – b)2]
∴ 5 sin A – 3 cos A = ± 3 .....[Taking square root of both sides]
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If `sec theta = x ,"write the value of tan" theta`.
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?