Advertisements
Advertisements
Question
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
Solution
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")`
= `((cos "A")/(sin "A"))/(1 - (sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/(1 - (cos "A")/(sin "A"))`
= `((cos "A")/(sin "A"))/((cos "A" - sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/((sin "A" - cos "A")/(sin "A"))`
= `"cos A"/"sin A" xx "cos A"/(cos "A" - sin "A") + "sin A"/"cos A" xx "sin A"/(sin "A" - cos "A")`
= `(cos^2"A")/(sin "A"(cos "A" - sin "A")) + (sin^2"A")/(cos"A"(sin"A" - cos"A"))`
= `1/(sin "A" - cos "A") ((-cos^3"A" + sin^3"A")/(sin"A" cos"A"))`
= `1/(sin"A" - cos"A")((sin^3"A" - cos^3"A")/(sin"A" cos"A"))`
= `1/(sin"A" - cos"A")xx ((sin"A" - cos"A")(sin^2"A" + sin"A" cos"A" + cos^2"A"))/(sin"A" cos"A")` ......[∵ a3 – b3 = (a – b)(a2 + ab + b2)]
= `(sin^2"A" +sin"A" cos"A" + cos^2"A")/(sin"A" cos"A"` ......(i)
= `(1 + sin"A" cos"A")/(sin"A" cos"A")` .....[∵ sin2A + cos2A = 1]
= `1/(sin"A" cos"A") + (sin"A" cos"A")/(sin"A" cos"A")`
= cosec A sec A + 1 .....(ii)
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot "A")`
= `(sin^2"A" + sin"A" cos"A" + cos^2"A")/(sin"A" cos"A")` ......[From (i)]
= `(sin^2"A")/(sin"A" cos"A") + "sin A cos A"/"sin A cos A" + (cos^2"A")/"sin A cos A"`
= `"sin A"/"cos A" + 1 + "cos A"/"sin A"`
= tan A + 1 + cot A ......(iii)
From (ii) and (iii), we get
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot "A")` = 1 + tan A + cot A = sec A . cosec A + 1
RELATED QUESTIONS
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ