English

Prove that cot A1-tanA+tan A1-cotA = 1 + tan A + cot A = sec A . cosec A + 1 - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1

Sum

Solution

`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")`

= `((cos "A")/(sin "A"))/(1 - (sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/(1 - (cos "A")/(sin "A"))`

= `((cos "A")/(sin "A"))/((cos "A" -  sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/((sin "A" -  cos "A")/(sin "A"))`

= `"cos A"/"sin A" xx "cos A"/(cos "A" - sin "A") + "sin A"/"cos A" xx "sin A"/(sin "A" - cos "A")`

= `(cos^2"A")/(sin "A"(cos "A" - sin "A")) + (sin^2"A")/(cos"A"(sin"A" - cos"A"))`

= `1/(sin "A" - cos "A") ((-cos^3"A" + sin^3"A")/(sin"A" cos"A"))`

= `1/(sin"A" - cos"A")((sin^3"A" - cos^3"A")/(sin"A" cos"A"))`

= `1/(sin"A" - cos"A")xx ((sin"A" - cos"A")(sin^2"A" + sin"A" cos"A" + cos^2"A"))/(sin"A" cos"A")`  ......[∵ a3 – b3 = (a – b)(a2 + ab + b2)]

= `(sin^2"A" +sin"A" cos"A" + cos^2"A")/(sin"A" cos"A"`  ......(i)

= `(1 + sin"A" cos"A")/(sin"A" cos"A")`   .....[∵ sin2A + cos2A = 1]

= `1/(sin"A" cos"A") + (sin"A" cos"A")/(sin"A" cos"A")`

= cosec A sec A + 1  .....(ii)

`"cot A"/(1 - tan "A") + "tan A"/(1 - cot "A")`

= `(sin^2"A" + sin"A" cos"A" + cos^2"A")/(sin"A" cos"A")`     ......[From (i)]

= `(sin^2"A")/(sin"A" cos"A") + "sin A cos A"/"sin A cos A" + (cos^2"A")/"sin A cos A"`

= `"sin A"/"cos A" + 1 + "cos A"/"sin A"`

= tan A + 1 + cot A    ......(iii)

From (ii) and (iii), we get

`"cot  A"/(1  - tan "A") + "tan A"/(1 -  cot "A")` = 1 + tan A + cot A = sec A . cosec A + 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.4

RELATED QUESTIONS

 Evaluate sin25° cos65° + cos25° sin65°


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`


Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`


Prove that:

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Prove the following identity :

`tan^2A - sin^2A = tan^2A.sin^2A`


Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`


prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×