Advertisements
Advertisements
Question
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Solution
We have `( cosec theta - sin theta ) = a^3`
= > ` a^3 = (1/ sin theta - sin theta)`
= > `a^3 = ((1- sin^2 theta))/sin theta = cos^2 theta / sin theta`
∴ `a=(cos^(2/3) theta)/(sin ^(1/3) theta)`
Again, `(sec theta - cos theta ) = b^3`
= >`b^3 = (1/cos theta - cos theta )`
=` ((1-cos^2 theta))/ cos theta`
=` (sin^2 theta)/cos theta`
∴ b =` (sin ^(2/3) theta)/(cos ^(1/3) theta)`
Now , LHS = `a^2 b^2 (a^2 + b^2 ) `
=` a^3 (ab^2) + ( a^2 b^2 ) b^3 `
=`a^3 ( ab^2 ) + ( a^2 b^2 ) b^3 `
=`(cos^2 theta)/(sin theta) xx [(cos ^(2/3) theta)/(sin^(1/3) theta) xx (sin ^(4/3)theta)/(cos ^(2/3) theta)] + [ ( cos ^(4/3) theta theta)/(sin ^(2/3) theta)xx(sin^(2/3)theta)/(cos ^(1/3)theta)] xx sin^2 theta/ cos theta`
=`cos^2 theta / sin theta xx sin theta + cos theta xx sin^2theta / costheta`
=`cos^2 theta + sin^2 theta = 1`
= RHS
Hence, proved
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Choose the correct alternative:
sec 60° = ?
Choose the correct alternative:
tan (90 – θ) = ?
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
If 2sin2θ – cos2θ = 2, then find the value of θ.