English

If `(Cosec Theta - Sin Theta )= A^3 and (Sec Theta - Cos Theta ) = B^3 , " Prove that " A^2 B^2 ( A^2+ B^2 ) =1` - Mathematics

Advertisements
Advertisements

Question

If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`

Solution

We have `( cosec theta - sin theta ) = a^3`

      = > ` a^3 = (1/ sin theta - sin theta)`

      = > `a^3 = ((1- sin^2 theta))/sin theta = cos^2 theta / sin theta`

∴ `a=(cos^(2/3) theta)/(sin ^(1/3) theta)`

Again, `(sec theta - cos theta ) = b^3`

       = >`b^3 = (1/cos theta - cos theta )`

      =` ((1-cos^2 theta))/ cos theta`

      =` (sin^2 theta)/cos theta`

∴ b =` (sin ^(2/3) theta)/(cos ^(1/3) theta)`

Now , LHS  = `a^2 b^2 (a^2 + b^2 ) `

  =` a^3 (ab^2) + ( a^2 b^2 ) b^3 `

=`a^3 ( ab^2 ) + ( a^2 b^2 ) b^3 `

=`(cos^2 theta)/(sin theta) xx [(cos ^(2/3) theta)/(sin^(1/3) theta) xx (sin ^(4/3)theta)/(cos ^(2/3) theta)] + [ ( cos ^(4/3) theta theta)/(sin ^(2/3) theta)xx(sin^(2/3)theta)/(cos ^(1/3)theta)] xx sin^2 theta/ cos theta`

 =`cos^2 theta / sin theta xx sin theta + cos theta xx sin^2theta / costheta`

 =`cos^2 theta + sin^2 theta = 1`

= RHS
Hence, proved

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 2

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 2 | Q 9

RELATED QUESTIONS

Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A


Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Choose the correct alternative:

sec 60° = ?


Choose the correct alternative:

tan (90 – θ) = ?


Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


If 2sin2θ – cos2θ = 2, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×