English

If 2sin2θ – cos2θ = 2, then find the value of θ. - Mathematics

Advertisements
Advertisements

Question

If 2sin2θ – cos2θ = 2, then find the value of θ.

Sum

Solution

Given,

2sin2θ – cos2θ = 2

⇒ 2sin2θ – (1 – sin2θ) = 2  ...[∵ sin2θ + cos2θ = 1]

⇒ 2sin2θ + sin2θ – 1 = 2

⇒ 3sin2θ = 3

⇒ sin2θ = 1

⇒ sinθ = 1 = sin 90°  ...[∵ sin 90° = 1]

∴ θ = 90°

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [Page 95]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 12 | Page 95

RELATED QUESTIONS

If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove the following identities:

`sinA/(1 + cosA) = cosec A - cot A`


Prove the following identities:

`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`


Prove that:

`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


Write the value of cosec2 (90° − θ) − tan2 θ. 


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`


Prove the following identity : 

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Find the value of sin 30° + cos 60°.


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A


tan θ × `sqrt(1 - sin^2 θ)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×