English

If Tan a + Sin a = M and Tan a - Sin a = N, Then Show that M2 - N2 = 4 Sqrt(Mn) - Mathematics

Advertisements
Advertisements

Question

If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.

Sum

Solution

Here,
m2 - n2 = (tan A + sin A)2 - (tan A - sin A)2
m2 - n2 = ( tan A + sin A + tan A - sin A )( tan A + sin A - tan A + sin A)
m2 - n2  = (2 tan A)(2 sin A)
m2 - n2  = 4 tan A sin A            ....(1)

Also,
`4 sqrt(mn) = 4sqrt((tan A + sin A)( tan A - sin A))`

= 4 `sqrt(tan^2 A - sin^2 A)`

= 4 `sqrt((sin^2 A)/(cos^2 A) - sin^2 A)`

= `4 sin A sqrt((1 - cos^2 A)/(cos^2 A))`

= `4 sin A sqrt((sin^2 A)/(cos^2 A))`

= `4 sin A sqrt((sin A)/(cos A))`

= 4 sin A. tan A         ....(2)

Using equation (1) and equation (2) we get the required conditions.
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 34
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×