English

`(Tab^2theta)/((1+ Tan^2 Theta))+ Cot^2 Theta/((1+ Cot^2 Theta))=1` - Mathematics

Advertisements
Advertisements

Question

`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`

Solution

LHS = `(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))`

       =`tan^2 theta/sec^2 theta + cot^2 theta/ cosec ^2 theta    (∵ sec^2 theta - tan^2 theta = 1 and  cosec^2 theta - cot^2 theta=1)`

      =`(sin^2theta/cos^2 theta)/(1/cos^2theta) + (cos^2theta/sin^2 theta)/(1/sin^2 theta)`

      =` sin^2 theta + cos^2 theta`

      =1 

      = RHS

Hence, LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 10

RELATED QUESTIONS

Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`


Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


Prove the following identities:

`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`


Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A


Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A


If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1


If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×