English

If Tan θ = 2, Where θ is an Acute Angle, Find the Value of Cos θ. - Geometry Mathematics 2

Advertisements
Advertisements

Question

If tan θ = 2, where θ is an acute angle, find the value of cos θ. 

Sum

Solution

1 + tanθ = sec2 θ  

∴ 1 + (2)2 = sec2 θ 

∴ sec2 θ  = 1 + 4

                = 5

sec θ = `sqrt(5)`

cos θ = `1/(sec theta)`

∴ cos θ = `1/sqrt(5)` 

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (October)

APPEARS IN

RELATED QUESTIONS

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`


` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`


cos4 A − sin4 A is equal to ______.


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Without using trigonometric table , evaluate : 

`cosec49°cos41° + (tan31°)/(cot59°)`


Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`


If sin θ = `1/2`, then find the value of θ. 


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`


Choose the correct alternative:

`(1 + cot^2"A")/(1 + tan^2"A")` = ?


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×