Advertisements
Advertisements
Question
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Options
tan2A
sec2A
cosec2A
cot2A
Solution
cot2A
`(1 + cot^2"A")/(1 + tan^2"A")`
= `("cosec"^2"A")/("sec"^2"A")`
= `(1/("sin"^2"A"))/(1/("cos"^2"A"))`
= `("cos"^2"A")/("sin"^2"A")`
= cot2A
APPEARS IN
RELATED QUESTIONS
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Evaluate:
`(tan 65°)/(cot 25°)`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A