English

`1+ (Cot^2 Theta)/((1+ Cosec Theta))= Cosec Theta` - Mathematics

Advertisements
Advertisements

Question

`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`

Solution

LHS =` 1+(cot^2 theta)/((1+ cosectheta))`

       =`1+((cosec^2 theta-1))/((cosectheta++1))    (∵ cosec^2 theta - cot^2 theta =1)`

      =`1+((cosectheta+1)(cosec theta-1))/((cosec theta +1))`

      =`1+ (cosec  theta -1)`

      =` cosec theta`

     =RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 8.1

RELATED QUESTIONS

Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`


Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


Choose the correct alternative:

`(1 + cot^2"A")/(1 + tan^2"A")` = ?


Prove that sec2θ − cos2θ = tan2θ + sin2θ


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Factorize: sin3θ + cos3θ

Hence, prove the following identity:

`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×