Advertisements
Advertisements
Question
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
Solution
LHS =` 1+(cot^2 theta)/((1+ cosectheta))`
=`1+((cosec^2 theta-1))/((cosectheta++1)) (∵ cosec^2 theta - cot^2 theta =1)`
=`1+((cosectheta+1)(cosec theta-1))/((cosec theta +1))`
=`1+ (cosec theta -1)`
=` cosec theta`
=RHS
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Prove that sec2θ − cos2θ = tan2θ + sin2θ
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`