English

If cos (α + β) = 0, then sin (α – β) can be reduced to ______. - Mathematics

Advertisements
Advertisements

Question

If cos (α + β) = 0, then sin (α – β) can be reduced to ______.

Options

  • cos β

  • cos 2β

  • sin α

  • sin 2α

MCQ
Fill in the Blanks

Solution

If cos (α + β) = 0, then sin (α – β) can be reduced to cos 2β.

Explanation:

According to the question,

cos(α + β) = 0

Since, cos 90° = 0

We can write,

cos(α + β) = cos 90°

By comparing cosine equation on L.H.S and R.H.S,

We get,

(α + β) = 90°

α = 90° – β

Now we need to reduce sin(α – β),

So, we take,

sin(α – β) = sin(90° – β – β) = sin(90° – 2β)

sin(90° – θ) = cos θ

So, sin(90° – 2β) = cos 2β

Therefore, sin(α – β) = cos 2β

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [Page 90]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 5 | Page 90

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


Prove that:

(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1


`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`


`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


If `sin theta = x , " write the value of cot "theta .`


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Choose the correct alternative:

sec2θ – tan2θ =?


The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×