English

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: cosA-sinA+1cosA+sinA-1=cosecA+cotA using the identity cosec2 A = 1 cot2 A. - Mathematics

Advertisements
Advertisements

Question

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.

Sum

Solution

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`

Using the identity cosec2A = 1 + cot2A,

L.H.S = `(cos A-sinA+1)/(cosA+sinA-1)`

= `(cosA/sinA-sinA/sinA+1/sinA)/(cosA/sinA+sinA/sinA+1/sinA)`

= `(cotA-1+cosec  A)/(cotA+1-cosec  A)`

= `({(cotA)-(1-cosec  A)}{(cotA)-(1-cosec  A)})/({(cotA)+(1-cosec  A)}{(cotA)-(1-cosec  A)})`

= `(cot A - 1 + cosecA)^2/((cotA)^2-(1-cosecA)^2)`

= `(cot^2A+1+cosec^2A-2cotA-2cosec  A+2cotAcosec  A)/(cot^2A-(1+cosec^2  A-2cosec  A))`

= `(2cosec^2  A+2cotAcosec  A-2cotA-2cosec  A)/(cot^2A-1-1cosec^2  A+2cosec  A)`

= `(2cosec  A(cosecA+cotA)-2(cotA+cosec  A))/(cot^2A-cosec^2A-1+2cosec  A)`

= `((cosec  A+cotA)(2cosec  A-2))/(-1-1+2cosec  A)`

= `((cosec  A+cotA)(2cosec  A-2))/(2cosec  A-2)`

= cosec A + cot A

= R.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.4 [Page 194]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.4 | Q 5.05 | Page 194

RELATED QUESTIONS

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


`(1+tan^2A)/(1+cot^2A)` = ______.


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


Prove the following identities:

`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


Prove the following identities:

`cosA/(1 - sinA) = sec A + tan A`


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`


If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ? 


Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove the following identity : 

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove the following identity : 

`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


Prove that:

`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)` 


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×