English

If X= a Sec `Theta + B Tan Theta and Y = a Tan Theta + B Sec Theta ,"Prove That" (X^2 - Y^2 )=(A^2 -b^2)` - Mathematics

Advertisements
Advertisements

Question

If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`

Solution

We have `x^2 - y^2 = [( a sec theta + b tan theta )^2 - ( a tan  theta + b sec theta )^2]`

                              =`(a^2 sec^2 theta + b^2 tan^2 theta + 2 ab sec theta tan theta)`

                           `  -(a^2 tan^2 theta + b^2 sec^2 theta + 2 ab tan theta sec theta)`

                           =`a^2 sec^2 theta + b^2 tan^2 theta - a^2 tan^2 theta - b^2 sec^2 theta`

                          =`(a^2 sec^2 theta - a^2 tan^2 theta)-( b^2 sec^2 theta - b^2 tan ^2 theta)`

                        =`a^2 ( sec^2 theta - tan^2 theta )-b^2 ( sec^2 theta - tan^2 theta)`

                       =`a^2 - b^2                     [∵ sec^2 theta - tan^2 theta =1]`

 Hence, `x^2 - y^2 = a^2 - b^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 2

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 2 | Q 2

RELATED QUESTIONS

Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove that:

2 sin2 A + cos4 A = 1 + sin4


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


Prove the following identity : 

`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


If 2sin2β − cos2β = 2, then β is ______.


If cosA + cos2A = 1, then sin2A + sin4A = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×