Advertisements
Advertisements
Question
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Solution
We have `x^2 - y^2 = [( a sec theta + b tan theta )^2 - ( a tan theta + b sec theta )^2]`
=`(a^2 sec^2 theta + b^2 tan^2 theta + 2 ab sec theta tan theta)`
` -(a^2 tan^2 theta + b^2 sec^2 theta + 2 ab tan theta sec theta)`
=`a^2 sec^2 theta + b^2 tan^2 theta - a^2 tan^2 theta - b^2 sec^2 theta`
=`(a^2 sec^2 theta - a^2 tan^2 theta)-( b^2 sec^2 theta - b^2 tan ^2 theta)`
=`a^2 ( sec^2 theta - tan^2 theta )-b^2 ( sec^2 theta - tan^2 theta)`
=`a^2 - b^2 [∵ sec^2 theta - tan^2 theta =1]`
Hence, `x^2 - y^2 = a^2 - b^2`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If 2sin2β − cos2β = 2, then β is ______.
If cosA + cos2A = 1, then sin2A + sin4A = 1.