Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Solution
We need to prove `(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Using the property `1 + tan^2 theta = sec^2 theta` we get
`(1 + tan^2 A)+(1 + 1/tan^2 A) = sec^2 A = ((tan^2 A + 1)/tan^2 A)`
`= sec^2 A + (sec^2 A)/(tan^2 A)`
Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta` we get
`sec^2 A + ((sec^2 A)/(tan^2 A)) = 1/cos^2 A + ((1/cos^2 A)/((sin^2 A)/(cos^2 A)))`
`= 1/cos^2 A + (1/cos^2A xx cos^2 A/sin^2 A)`
` = 1/cos^2 A + 1/sin^2 A`
`= (sin^2 A + cos^2 A)/(cos^2 A(sin^2 A))`
Further, using the property, `sin^2 theta + cos^2 theta = 1` we get
`(sin^2 A + cos^2 A)/(cos^2 A(sin^2 A)) = 1/(cos^2 A (sin^2 A))`
`= 1/((1 - sin^2 A)(sin^2 A))` (using `cos^2 theta = 1 - sin^2 theta`)
`= 1/(sin^2 A - sin^4 A)`
Hence proved
APPEARS IN
RELATED QUESTIONS
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
If tan α + cot α = 2, then tan20α + cot20α = ______.
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.