Advertisements
Advertisements
Question
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Solution
Let `x/(acosθ) = y/(bsinθ)` ..............(1)
and `(ax)/(cosθ) - (by)/(sinθ) = a^2 - b^2` ...........(2)
From (1), `y/sinθ = (xb)/(a cosθ)`
Putting (2) , we get `(ax)/cosθ - b (xb)/(acosθ) = a^2 - b^2`
⇒ `(ax)/cosθ - (xb^2)/(a cosθ) = a^2 - b^2`
⇒ `(x(a^2 - b^2))/(acosθ) = a^2 - b^2`
⇒ x = a cosθ
By(1), `y = (xb sinθ)/(a cosθ) = (a cosθ bsinθ)/(a cosθ) = b sinθ`
Thus , `x^2/a^2 + y^2/b^2 = (a^2 cos^2θ)/a^2 + (b^2 sin^2θ)/b^2 = sin^2θ + cos^2θ = 1`
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`