Advertisements
Advertisements
Question
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Solution
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
consider `sin42^circ sec48^circ + cos42^circ cosec48^circ`
⇒ `sin42^circ sec(90^circ - 42^circ) + cos42^circ cosec(90^circ - 42^circ)`
⇒ `sin42^circ . cosec42^circ + cos42^circ sec42^circ`
⇒ `sin42^circ . 1/sin42^circ + cos42^circ 1/cos42^circ`
⇒ 1 + 1 = 2
APPEARS IN
RELATED QUESTIONS
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ