Advertisements
Advertisements
Question
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ
Solution
(sec θ + tan θ) (1 – sin θ) = cos θ
L.H.S. (sec θ + tan θ) (1 – sin θ)
= `(1/cosθ + sinθ/cosθ)(1 - sinθ)`
= `((1 + sinθ)(1 - sinθ))/cosθ`
= `(1 - sin^2θ)/cosθ`
= `(sin^2θ + cos^2θ - sin^2θ)/cosθ`
= `cos^2θ/cosθ`
= cos θ
= R.H.S.
Hence Proved.
APPEARS IN
RELATED QUESTIONS
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Evaluate sin25° cos65° + cos25° sin65°
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
From the figure find the value of sinθ.
Write the value of cosec2 (90° − θ) − tan2 θ.
Find the value of sin 30° + cos 60°.
Choose the correct alternative:
1 + tan2 θ = ?
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.