Advertisements
Advertisements
Question
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
Solution
LHS = `sin^6 theta + cos^6 theta`
=` (sin^2 theta )^3 + (cos^2 theta )^3`
Put sin2 θ = a and cos2 θ = b
∴ L.H.S. = a3 + b3
= (a + b)3 − 2ab (a + b)
=`(sin ^2 theta + cos^2 theta )-3 sin^2thetacos^2 theta(sin^2 theta cos^2 theta)`
=`(1)^3 - 3 sin^2 theta cos^2 theta` [∴ sin2 θ + cos2 θ = 1]
=`1-3sin^2 theta cos^2 theta`
= RHS
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
If sin θ = `1/2`, then find the value of θ.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Choose the correct alternative:
tan (90 – θ) = ?
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`