Advertisements
Advertisements
Question
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Options
0
1
−1
None of these
Solution
The given expression is `2(sin^6θ+cos^6θ)-3(sin^4θ+cos^4θ)`
Simplifying the given expression, we have
`2(sinθ+cos^6θ)-3(sin^4θ+cos^4θ)`
= `2sin^6θ+2cos^6θ-3sin^4θ-3cos^4θ`
=`(2 sin^6 θ-3sin^4θ)+(2 cos^6-3 cos^4θ)`
=`sin^4θ(2sin^2θ-3)+cos^4θ(2 cos^2θ-3)`
`=sin^4θ{2(1-cos^2)-3}+cos^4θ{2(1-sin^2 θ)-3)`
`= sin^4θ(2-2cos^2θ-3)+cos^4θ(2-2sin^2 θ-3) `
`=sin^4θ(-1-2cos^θ)+cos^4θ(1-2sin^2θ)`
`= -sin^4θ-2 sin^4θ cos^2θ-cos^4θ-2cos^4 θ sin^2θ`
`=sin^4θ-cos^4θ-2 cos^4 θ sin^2θ-2 sin^4 θcos^2θ`
`=-sin^4θ-cos^4θ-2cos^2θ sin^2(cos^2+sin^2θ)`
`=-sin^4θ-cos^4θ-2cos^2θsin^2θ(1)`
`=-sin^4θ-cos^4θ-2cos^2sin^2θ`
`=(sin^4θ+cos^4 θ+2 cos^2 θ sin^2 θ)`
`=-{(sin^2θ)^2+(cos^2θ)^2+2 sin^2 θ cos^2θ}`
` =-(sin^2θ+cos^2θ)^2`
`=-(1)^2`
`=-1`
APPEARS IN
RELATED QUESTIONS
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
(sec θ + tan θ) . (sec θ – tan θ) = ?
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.