Advertisements
Advertisements
Question
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
Solution
L.H.S. = `(1 + sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A)`
= `((1 + sin A)(cosec A + cot A) - (1 - sin A)(cosec A - cot A))/((cosec A - cot A)(cosec A + cot A))`
= `(cosec A + cot A + sin A cosec A + sin A cot A - cosec A + cot A + sin A cosec A - sin A cos A)/(cosec^2A - cot^2A)`
= 2 cot A + 2 sin A cosec A
= 2 cot A + 2 `1/(cosec A) xx cosec A`
= 2 (cot A + 1)
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
If `sec theta + tan theta = x," find the value of " sec theta`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.