Advertisements
Advertisements
Question
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Solution
L.H.S. = `(costhetacottheta)/(1 + sintheta)`
= `(costhetacottheta)/(1 + sintheta) xx (1 - sintheta)/(1 - sintheta)`
= `(costhetacottheta(1 - sintheta))/(1 - sin^2theta)`
= `(costheta costheta/sintheta(1 - sintheta))/cos^2theta`
= `(1 - sintheta)/sintheta`
= `1/sintheta - 1`
= cosec θ – 1
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.