Advertisements
Advertisements
Question
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Solution
`sqrt((1 - cosA)/(1 + cosA))`
= `sqrt((1 - cosA)/(1 + cosA) xx (1 + cosA)/(1 + cosA))`
= `sqrt((1 - cos^2A)/(1 + cosA)^2)`
= `sqrt(sin^2A/(1 + cosA)^2)`
= `sinA/(1 + cosA)`
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If tan θ = `13/12`, then cot θ = ?