English

Write True' Or False' and Justify Your Answer the Following : the Value of Sin θ+Cos θ is Always Greater than 1 - Mathematics

Advertisements
Advertisements

Question

 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .

True or False

Solution

Consider the table.

θ 30° 45° 60° 90°
`sin θ` `0` `1/2` `1/sqrt2` `sqrt3/2` `1`
`cosθ` `1` `sqrt3/2` `1/sqrt2` `1/2` `0`

Here, 

`sin 90°+cos 90°=1+0=1`  Which is not greater than 1 Therefore, the given statement is false, 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.3 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.3 | Q 24.5 | Page 56

RELATED QUESTIONS

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


Prove the following trigonometric identities.

`(cos^2 theta)/sin theta - cosec theta +  sin theta  = 0`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following trigonometric identities.

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`


Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`


Prove the following trigonometric identities.

`(cot A + tan B)/(cot B + tan A) = cot A tan B`


If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.


Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`


`(1-cos^2theta) sec^2 theta = tan^2 theta`


`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


Prove the following identity :

sinθcotθ + sinθcosecθ = 1 + cosθ  


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1


Prove that sin6A + cos6A = 1 – 3sin2A . cos2A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×