Advertisements
Advertisements
प्रश्न
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
उत्तर
Consider the table.
θ | 0° | 30° | 45° | 60° | 90° |
`sin θ` | `0` | `1/2` | `1/sqrt2` | `sqrt3/2` | `1` |
`cosθ` | `1` | `sqrt3/2` | `1/sqrt2` | `1/2` | `0` |
Here,
`sin 90°+cos 90°=1+0=1` Which is not greater than 1 Therefore, the given statement is false,
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
If `secθ = 25/7 ` then find tanθ.
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
Prove that sec2θ – cos2θ = tan2θ + sin2θ
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.