Advertisements
Advertisements
प्रश्न
If `secθ = 25/7 ` then find tanθ.
उत्तर
`1 + tan^2θ = sec^2θ`
`1 + tan^2θ =(25/7)^2`
`∴ tan^2θ =625/49- 1`
`∴ tan^2θ =(625-49)/49`
`∴ tan^2θ =576/49`
`∴ tanθ =24/7`
APPEARS IN
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove that:
tan (55° + x) = cot (35° – x)
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove that sec2θ – cos2θ = tan2θ + sin2θ
Given that sin θ = `a/b`, then cos θ is equal to ______.