हिंदी

If `Secθ = 25/7 ` Then Find Tanθ. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If `secθ = 25/7 ` then find tanθ.

उत्तर

`1 + tan^2θ = sec^2θ`

`1 + tan^2θ =(25/7)^2`

`∴ tan^2θ =625/49- 1`

`∴ tan^2θ =(625-49)/49`

`∴ tan^2θ =576/49`

`∴ tanθ =24/7`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) Balbharati Model Question Paper Set 1

संबंधित प्रश्न

`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


`(1+tan^2A)/(1+cot^2A)` = ______.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Prove the following trigonometric identities.

`(1 + cos A)/sin^2 A = 1/(1 - cos A)`


Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`


Prove that:

`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


`(1-cos^2theta) sec^2 theta = tan^2 theta`


Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`


If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove that:

tan (55° + x) = cot (35° – x)


Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


Prove that sec2θ – cos2θ = tan2θ + sin2θ


Given that sin θ = `a/b`, then cos θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×