Advertisements
Advertisements
प्रश्न
`(1-cos^2theta) sec^2 theta = tan^2 theta`
उत्तर
LHS = `(1-cos^2 theta)sec^2 theta`
=`sin^2 theta xx sec^2 theta (∵ sin^2 theta + cos^2 theta = 1)`
= `sin^2 theta xx 1/(cos^2 theta)`
=`(sin^2 theta)/(cos^2 theta)`
=`tan^2 theta`
=RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove the following identity :
tanA+cotA=secAcosecA
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Choose the correct alternative:
cos 45° = ?
If tan θ = `13/12`, then cot θ = ?
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.