Advertisements
Advertisements
प्रश्न
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
उत्तर
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
L.H.S = `(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")`
= `((sin"A" + cos"A")(sin^2"A" - sin"A"cos"A" + cos^2"A"))/((sin"A" + cos"A")) + ((sin"A" - cos"A")(sin^2"A" + sin"A"cos"A" + cos^2"A"))/((sin"A" - cos"A"))`
= (sin2 A + cos2 A) − sin A cos A + (sin2 A + cos2 A) + sin A cos A
= 1 + 1
= 2
L.H.S = R.H.S
∴`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
APPEARS IN
संबंधित प्रश्न
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`(1 + cot^2 theta ) sin^2 theta =1`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
If sin θ = `1/2`, then find the value of θ.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1