Advertisements
Advertisements
प्रश्न
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
विकल्प
1
2
4
0
उत्तर
The given expression is
`(1+cot θ-cosec θ )(1+tan θ+sec θ)`
Simplifying the given expression, we have
`(1+cot θ-cosec θ)(1+tan θ+sec θ)`
=`(1+cos θ/sin θ-1/sin θ)(1+sin θ/cos θ+1/cos θ)`
= `(sin θ+cos θ-1)/sin θxx (cos θ+sin θ+1)/cos θ`
= `((sin θ+cos θ-1)(cos θ+sin θ+1))/(sin θcos θ)`
=`({(sin θ+cos θ)-1}{(sin θ+cos θ)+1})/(sin θ cos θ)`
=`((sin θ+cos θ)^2-(1)^2)/(sin θ cos θ)`
=`((sin θ+cos θ)^2-(1)^2)/(sin θ cos θ)`
=`((sin^2 θ+cos^2θ+2 sin θcos θ)-1)/(sin θ cos θ)`
=`((sin ^2θ+cos^2θ)+2 sinθ cos θ-1)/(sin θcos θ)`
= `(1+2 sin θ cosθ-1)/(sinθ cos θ)`
=`( 2 sin θ cos θ)/(sin θ cos θ)`
=`2`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
If tanθ `= 3/4` then find the value of secθ.
What is the value of (1 − cos2 θ) cosec2 θ?
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
If 1 – cos2θ = `1/4`, then θ = ?
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.