Advertisements
Advertisements
प्रश्न
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
उत्तर
LHS = `( tan A + sec A - 1)/(tan A - sec A + 1)`
= `(( tan A + sec A) - (sec^2 A - tan^2 A))/((tan A - sec A) + 1)`
= `(( tan A + sec A)( 1 - sec A + tan A))/(tan A - sec A + 1)`
= tan A + sec A
= `sin A/cos A + 1/cos A = (1 + sin A)/cos A`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.