Advertisements
Advertisements
प्रश्न
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
उत्तर
LHS = `2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1`
= `2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1`
= `2[(sin^2θ)^3 + (cos^2θ)^3] - 3(sin^4θ + cos^4θ) + 1`
= `2[(sin^2θ + cos^2θ){(sin^2θ)^2 + (cos^2θ)^2 - sin^2θcos^2θ}] - 3(sin^4θ + cos^4θ) + 1`
= `2{(sin^2θ)^2 + (cos^2θ)^2 - sin^2θcos^2θ} - 3(sin^4θ + cos^4θ) + 1`
= `2sin^4θ + 2cos^4θ - 2sin^2θcos^2θ - 3sin^4θ - 3cos^4θ + 1`
= `-sin^4θ - cos^4θ - 2sin^2θcos^2θ + 1`
= `-(sin^4θ + cos^4θ + 2sin^2θcos^2θ) + 1`
= `-(sin^2θ + cos^2θ)^2 + 1 = -1 + 1 = 0`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.