Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
उत्तर
LHS = `(1 + cotA + tanA)(sinA - cosA)`
= `(1 + cosA/sinA + sinA/cosA)(sinA - cosA)`
= `((sinAcosA + cos^2A + sin^2A)/(sinAcosA))(sinA - cosA)`
= `((sin^3A - cos^3A))/(sinAcosA)` (∵(`sin^3A - cos^3A) = (sinA - cosA)(sinA cosA + cos^2A + sin^2A`))
= `sin^3A/(sinAcosA) - cos^3A/(sinAcosA)`
= `sin^2A/cosA - cos^2A/sinA = 1/cosA xx sin^2A - 1/sinA xx cos^2A`
= `secAsin^2A - cosecAcos^2A`
= `secA/(cosec^2A) - (cosecA)/sec^2A`
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Choose the correct alternative:
cos 45° = ?
If cos A + cos2A = 1, then sin2A + sin4 A = ?