हिंदी

If cos A + cos2A = 1, then sin2A + sin4 A = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If cos A + cos2A = 1, then sin2A + sin4 A = ?

योग

उत्तर

cos A + cos2A = 1   ......[Given]

∴ cos A = 1 – cos2A

∴ cos A = sin2A    ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`

∴ cos2A = sin4A     .....[Squaring both the sides]

∴ 1 – sin2A = sin4A

∴ 1 = sin4A + sin2A

∴ sin2A + sin4A = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.5

संबंधित प्रश्न

9 sec2 A − 9 tan2 A = ______.


Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


Prove the following identities:

(1 – tan A)2 + (1 + tan A)2 = 2 sec2A


Prove that:

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


Write the value of cosec2 (90° − θ) − tan2 θ. 


If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 


Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`


Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


Prove that cot2θ × sec2θ = cot2θ + 1


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×