हिंदी

P If Sin θ = 1 3 Then Find the Value of 2cot2 θ + 2. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 

योग

उत्तर

Given:  

`sin θ=1/3`

⇒ `1/ sinθ=3` 

⇒` cosec θ=3` 

We know that, 

`cosec^2θ-cot ^2θ=1` 

⇒`(3)^2-cot^2θ=1` 

⇒ `cot ^2 θ=9-1`  

Therefore, 

`2 cot ^2 θ+2=2xx8+2` 

          =`16+2` 

          = `18` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.3 | Q 17 | पृष्ठ ५५

संबंधित प्रश्न

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`


Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A


`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0` 


`(tan A + tanB )/(cot A + cot B) = tan A tan B`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


Write the value of tan1° tan 2°   ........ tan 89° .


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


Prove that sec2θ − cos2θ = tan2θ + sin2θ


If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×